
12025 - 12028 
Drive Tube 

41 cm 

Figure 1:  Astronaut caught in the process of hammering in the double drive tube at Halo Crater, Apollo 
12 (with the side of his hammer!). “We’ve got a double. Now, the question is can we pull it out?”  NASA 
AS12-49-7286. 

Introduction 
A core sample was obtained from about 30 meter from 
Halo Crater and 220 meters from Bench Crater, Apollo 
12. The double drive tube was driven in 69 cm (figures 
1 and 3), but only 41 cm of material was returned 
(figures 4 and 5). The bottom segment was completely 
full (12025 is the top segment and 12028 is the lower 
segment). 

Petrography 
12028 contains a coarse layer about 2 cm thick. It 12028 - 12025 
could simply be nothing more than a friable basalt Figure 2:  Map of Apollo 12 site., showing location 

of double drive tube. 
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Figure 3:  Photo of 12025-12028 double drive tube. AS12-49-7287. 

fragment that broke up into mineral fragments as the The mineralogical characteristics of the double drive 
core was driven through it (figure 6). tube were first reported by Seller et al. (1971), McKay 

et al. (1971) and Quaide et al. (1971). 
The maturity index of the Apollo 12 cores have not 
been reported by the Is/FeO method, but can, perhaps The coarse layer is an olivine basalt typical of the 
be judged by average grain size (figure 4), agglutinate Apollo 12 basalts (Sellers et al. 1971). 
content (glazed aggregates), rare gas content (figure 
6) or fossil nuclear tracks (figure 13). The average Chemistry 
grain size varied from 64 to 125 microns along the The double drive tube has not been analyzed for all 
length (figure 4). The 2 cm thick, coarse layer had an elements (table 1). Since it was located between 12042 
average grain size of 600 microns. and 12044 (figure 2), the top portion (12025) should 

be compared with the analyses of these surface soil. 
Laul et al. (1971) have updated the original analyses 

Mineralogical Mode 
Sellers et al. 1971 
depths X IX VII VI V IV III-u III-m II I 
Glazed 
Aggregates 46 10 44 39 14 9 23 6 1 
Glass 14 9 10 12 1 22 6 9 15 10 
Breccia 3 21 0 2 5  7  5  26  31  
Basalt 3 15 8 5 10 22 23 4 5 
Anorthosite 2 1 5 1 1 
Mineral 29 42 37 40 99 46 54 34 47 51 
(see figure 5 for depths) 
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Figure 4:  Dissection diagram of double 
drive tube showing location of splits 
(LSPET 1970; Sellers et al. 1971). 
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Figure 5:  Dissection 
diagram from Lunar 
Core Catalog showing 
average grain size as 
function of depth 
(Duke 1974). 
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reported by Ganapathy et al. (1970). The REE content 
is quite high. 

Cadogen et al. (1972) determined the carbon 
compounds as function of depth, but it is difficult to 
calculate the total carbon content from this. Moore et 
al. (1971) determined the carbon and nitrogen content 
of 9 splits. The carbon content was relatively constant 
at about 130 ppm, while the nitrogen content decreased 
from 130 ppm at the surface to about 90 ppm at depth. 

Cosmogenic isotopes and exposure ages 
Nishiizumi et al. (1979) studied the depth profile for 
53Mn for 12025-12028 and Rancitelli et al. (1971) 
reported 22Na and 26Al as function of depth (figure 11). 

Other Studies 
Arrhenius et al. (1971) reported large and irregular 
variations in the fraction of track-rich grains ranging 
from 0% to almost 100%. Comstock et al. (1971) 
determined the density of nuclear tracks as function of 
depth (figure 13). 

Marti and Lugmair (1971) and Basford et al. (1973) 
determined the isotopes for Xe and Kr as function of 
depth (figure 6). 

Hoyt et al. (1971) found that material from depth, 
emitted light when heated (figures 9 and 10). 

Figure 6:  Summary of rare gas content of the 
Apollo 12 double drive tube, indicating maximum 
maturity at 10 - 12 cm depth (Marti et al. 1971). 

Figure 7:  Photo of 2 cm thick coarse layer near top of 12028. NASA S69-23404.  Scale in cm. 
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Figure 8:  Close-up photo of dissection of 12025 (upper portion of double drive tube) showing issolation 
and removal of a large particle (1 cm) at 27 cm.  NASA  S 69-23806. Scale is in cm. 

Processing 
The Apollo 12 cores were 2 cm in diameter (Allton 
1989). Please note that the Apollo 11 and 12 drive 
tubes did not cut into the regolith, but rather the regolith 
flowed thru the bits to fill the tubes as they were driven 
(often hammered) into the regolith – as such, the length 
of the cores does not match the depth into the regolith. 

There are no thin sections for this core. 
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Figure 10:  Luminescence of indiviual particles as 
function of temperature release (Hoyt et al. 1972). 

Figure 9:  Thermal luminescence as function of 
depth in core (Hoyt et al. 1972). 

Figure 11:  Cosmic-ray-induced activity as 
function of depth in core 12025 (Rancitelli et al. 
1971, 1972). 
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Figure 12:  Variation of components in double drive tube (McKay et al. 1971). 
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Table 1.  Chemical composition of 12028 - 25. 
12025 12028 12028 12028 12028 12025 12028 12028 12028 12028 

reference Schnetzler71 Laul71 Ganapathy70 
depth 1.7 - 2.5 cm 13.2-14.4 18.9-19.7 31.2-32.2 37.2-38.2 1.7 - 2.5 cm 13.2-14.4 18.9-19.7 31.2-32.2 37.2-38.2 
SiO2 % 
TiO2 
Al2O3 
FeO 
MnO 
MgO 
CaO 
Na2O 
K2O 
P2O5 
S % 
sum 

Sc ppm 
V 
Cr 
Co 39 
Ni 
Cu 
Zn 6.1 1.5 5.1 5.4 4.3 (b) 
Ga 3.9 2.7 5.2 5 5.2 
Ge ppb 
As 
Se 215 86 230 247 237 (b) 
Rb 6.84 0.613 7.84 7.93 8.96 (c ) 6 0.32 8.6 9 10.8 (b) 
Sr 144.4 80.9 155.2 152.7 154.9 (c ) 
Y 
Zr 
Nb 
Mo 
Ru 
Rh 
Pd ppb 
Ag ppb 28 301 140 3.6 7.2 (b) 
Cd ppb 70 22000 53 48 49 (b) 
In ppb 77 42 290 9 26 (b) 
Sn ppb 
Sb ppb 
Te ppb 130 10 80 30 90 (b) 
Cs ppm 0.25 0.023 0.35 0.36 0.34 (b) 
Ba 389 44.9 442 463 518 (c ) 
La 
Ce 90.2 10.2 112 109 121 (c ) 
Pr 
Nd 57.2 7.82 70.1 68.4 78.2 (c ) 
Sm 16.5 2.7 19.6 19.4 22.2 (c ) 
Eu 1.74 0.73 2.03 1.97 2.025 (c ) 
Gd 20.8 3.68 23.2 23.4 27.6 (c ) 
Tb 
Dy 21.2 4.68 25.5 26.1 30 (c ) 
Ho 
Er 13.1 2.83 14.9 15.5 17.1 (c ) 
Tm 
Yb 12 2.77 14 14.2 16.1 (c ) 
Lu 1.86 0.42 2.08 2.19 2.42 (c ) 
Hf 
Ta 
W ppb 
Re ppb 
Os ppb 
Ir ppb 5.9 0.08 8.1 8.7 9.2 (b) 
Pt ppb 
Au ppb 2.5 0.63 1.7 2.1 2 (b) 
Th ppm 
U ppm 
technique: (a) IDMS, (b) RNAA, (c ) IDMS 
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Figure 13:  Density of fossil nuclear tracks as function of depth in 12025-12028 double drive tube.(Comstock et 
al. 1971). 
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