Northwest Africa 4884

Anorthosite-bearing basaltic (polymict) regolith breccia 42 g

Figure 1: Interior surface of NWA 4884 with fingers for scale (photo by G. Hupe).

Introduction

Northwest Africa 4884 was found in 2007 in northwest Africa. It is comprised of a single stone (42 g) partially covered by black fusion crust; interior slices show it to be a breccia composed of white, beige and light gray clasts in a dark gray matrix (Fig. 1).

Petrography and Mineralogy

Preliminary reports (Connolly et al., 2008) describe it as a "regolithic breccia composed of abundant angular mineral and lithic clasts in a sparse vesicular, glassy matrix. Mineral fragments include calcic plagioclase ($An_{92,4-95,3}Or_{0.5-0.1}$), pigeonite ($Fs_{52,3}Wo_{10.5}$; FeO/MnO = 65.2), augite, Ti-chromite, ilmenite (one with a tiny baddeleyite inclusion) and silica polymorph. Lithic clasts include several types of mare basalt (a coarse-grained example is composed of olivine + zoned pigeonite + calcic plagioclase + ilmenite + troilite), granophyric intergrowths of Fe-rich augite+fayalitic olivine+silica polymorph, a coarse grained dunitic or troctolitic rock containing a large metal grain (associated with rutile and secondary ilmenite), and a large "breccia-withinbreccia" clast. Mare basalt clasts and debris are predominant over highlands lithologies." Olivine clasts ($Fa_{37,0-37,7}$; FeO/MnO = 94-98) are very different from olivine in a basalt clast ($Fa_{87.9}$; FeO/MnO = 89), and augite lamella ($Fs_{31.9}Wo_{31.9}$; FeO/MnO = 60.3), pigeonite clast ($Fs_{60.1}Wo_{7.0}$, FeO/MnO = 71.1), and augite clasts ($Fs_{17.2}Wo_{36.9}$, FeO/MnO = 53.3) are slightly different in composition from those in the basaltic clasts.

Chemistry

The intermediate FeO content and high Sm are consistent with this sample being a mixture of anorthositic and basaltic materials in a regolith breccia (Table 1). Moreover, the composition of NWA 4884, combined with its petrography and mineralogy, have led some to propose that it could be launch paired with the Yamato 981031 and QUE 94281 polymict lunar meteorites (Korotev et al., 2009a,b). The overlapping trace element characteristics (Fig. 2) and major element composition (Korotev et al., 2009b) illustrate this well.

Figure 2: Sm/Sc versus Cr for a wide range of lunar meteorites, but illustrating the narrow compositional range of the YQN (Yamato 981031, QUE 94281, and NWA 4884) samples (from Korotev et al., 2009a).

Table 1a:Che NWA 4884	emical comp	osition of	Ru Rh Pd ppb
reference	1	1	Ag ppb
weight	20-60	266	Cd ppb
technique	а	С	In ppb
			Sn ppb
SiO ₂ %	46.2		Sb ppb
TiO	0.63		Te ppb
	17		Cs ppm 0.09
Ai_2O_3	137	13 70	Ba 88
MnO	0.18	13.72	La 6.29
MgO	8.85		Ce 16.4
CaO	12.4	13.9	Pr
Na O	0.07	0.000	Nd 10.1
Na ₂ O	0.37	0.366	Sm 3.07
K_2O	0.07	<0.3	Eu 0.786
P_2O_5	0.06		Gd
S %			Tb 0.638
sum	99.8		Dy
			Ho
Sc ppm		29.9	Er
V			1m
Cr		2050	Yb 2.35
Со		43.8	Lu 0.33
Ni		153	HI 2.25
Cu			Ta 0.20
Zn			w ppb
Ga			Reppo
Ge			Us ppb
As		<0.8	If pp0 3.2
Se		0.1	Pi ppo
Rb		<8	Au ppo 1.2
Sr		115	1 n ppm 0.93
Y		• -	U ppm 0.26
Zr		88	technique (a) EMPA. (b) ICP-MS. (c) INAA (d)
Nb			XRF
Mo			

<u>Radiogenic age dating</u> <u>**Cosmogenic isotopes and exposure ages**</u> None yet reported.

Table 1b. Light and/or volatileelements for NWA 4884

Li ppm Be C S F ppm Cl Br 0.1 I Pb ppm Hg ppb Tl Bi References: 1) Korotev et al. (2009b)

K. Righter - Lunar Meteorite Compendium - 2010