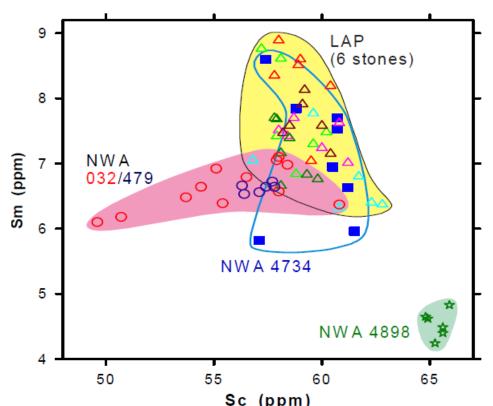
Northwest Africa 4898

Unbrecciated basalt 137 g


Figure 1: Slice through NWA 4898, with close up of matrix (upper right) and 1 cm cube for scale.

Introduction

Northwest Africa 4898 (Fig. 1) was found in northwest Africa in 2007, and consists of one fragment almost completely covered with fusion crust and weighing 137 g (Connolly et al., 2008). Inspection of the interior reveals it basaltic texture (Fig. 1).

Petrography and Mineralogy

The texture of this sample is spherulitic with lath-shaped plagioclase, pyroxene, and skeletal ilmenite. Olivine is present as larger crystals (Fa_{26.3-27.2}; FeO/MnO = 73-92), and often contains chromite inclusions. The calcic plagioclase (An_{92.6-96.5}) has been completely transformed into maskelynite during shock metamorphism. And the pyroxenes (Fs_{25.1-58.7}Wo_{13.2-34}; FeO/MnO = 42-76) are compositionally zoned Ti-rich pigeonite and augite. FeNi-metal and troilite are present as minor phases (Connolly et al., 2008; Greshake et al., 2008). Finally, according to Greshake et al. (2008) the meteorite belongs to shock stage 2b, and experienced an equilibration shock pressure of ~28-34 GPa and a post-shock temperature of ~200-250°C.

Sc (ppm) Figure 2: Sm – Sc diagram showing the distinct composition of NWA 4898 compared to the LAP basalts, NWA 032/479 and NWA 4734 (from Fernandes et al., 2009c).

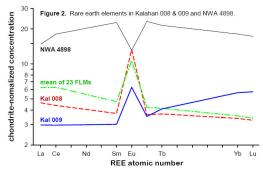
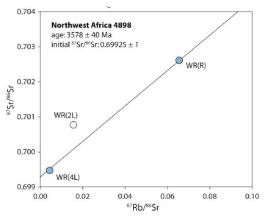
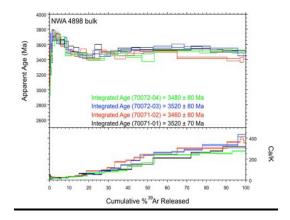



Figure 3: Rare earth element diagram for NWA 4898 illustrating a Eu anomaly (from Korotev et al., 2008).

Figure 4: Whole rock isochron for NWA4898 indicating an age of 3.58 Ga (from Gaffney et al., 2008).

Chemistry

INAA analyses of 6 small (133 mg total) chips of NWA 4898 reveal its low FeO nature (Table 1) and Eu anomaly (Fig. 2). Similarly, the Sm-Sc trends are distinct from several of the other LAP and NWA basalt groups (Fig. 3).


Radiogenic age dating

A whole rock Rb-Sr isochron based on three measurements from NWA 4898 yields an age of 3.58 Ga (Fig. 4; Gaffney et al., 2008). Ar-Ar measurements on four different aliquots of NWA 4898 by Fernandes et al. (2009c) illustrate a 3.5 Ga age (Fig. 5)

Additional Nd isotopic analyses show that NWA 4898 may have been derived from one of the most LREE depleted lunar mantle sources known (Fig. 6; Gaffney et al., 2008).

Cosmogenic isotopes and exposure ages

ages ³⁸Ar cosmic-ray production rates of 1.031×10^{-8} cc/g/Ma for NWA 4898 were calculated by Fernandes et al. (2009c). The resulting calculated CRE-age for NWA 4898 aliquots is ~31 Ma.

Figure 5: Apparent age vs. % 39Ar-release for four aliquots from lunar basalt NWA 4898.

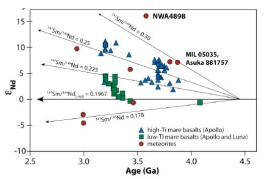


Figure 6: Results of Nd isotopic analyses of Gaffney et al (2008) showing the depleted nature of this sample relative to other Apollo, Luna and meteorite samples.

		-	Rh					
reference	1	2	Pd ppb					
weight	133		Ag ppb					
technique	INAA	INAA,	Cd ppb					
		XRF 46.15	In ppb					
			Sn ppb					
SiO ₂ %	-	2.39	Sb ppb					
TiO ₂	-	11.98	Te ppb					
Al_2O_3	-	0.43	Cs ppm					
Cr_2O_3	-	17.34	Ba					
FeO	17.2	0.25	La		4.71			
MnO	-	8.31	Ce		14.8			
MgO	-	11.43	Pr					
CaO	-	0.30	Nd		12			
Na ₂ O	0.296	0.30	Sm	4.55	4.55			
K ₂ O	-	<0.06	Eu	0.997	0.997			
P_2O_5	-	<0.00	Gd					
S %	-		Tb		1.06			
sum	-		Dy					
~	(= 1	65.4	Но					
Sc ppm	65.4	120	Er					
V	2020	120	Tm					
Cr	3020	24.8	Yb		4.00			
Co	-190	<180	Lu		0.57			
Ni	<180	<180	Hf		4.45			
Cu			Та		0.24			
Zn			W ppb					
Ga			Re ppb					
Ge			Os ppb					
As			Ir ppb					
Se			Pt ppb					
Rb			Au ppb					
Sr			Th ppm	0.44	0.44			
Y		145	U ppm					
Zr		140	Reference		Korotev	et	al.	(2008);
Nb			Greshake	et al. (20	008).			
Mo								
Ru								

Table 1. Chemical composition of NWA 4898

K. Righter, Lunar Meteorite Compendium, 2010