DRIVE TUBES $74002 / 74001$Dissection and description by J. Stewart Nagle27 January, 1978
INTRODUCTION VII. 5.1
RELATIONSHIP TO SAMPLING SITE 1
PROCESSING PROCEDURES AND METHODS OF STUDY 3

1. General 4
2. Timelines and handling history 4
3. X-radiography 4
4. Extrusion 5
5. Dissection 5
A. Configuration for each dissection 5
B. Sample handling procedures during dissection , 6
C. Preliminary examination of grain mounts 8
RESULTS 9
6. X-radiograph Stratigraphy 9
7. Depth Effects 12
A. Compaction due to extrusion 12
B. Sample depth convention 12
8. Stratigraphy from binocular microscope observation 13
A. Introduction 13
B. Continuous trends through the fine-grained part of the core 13
C. Comparison of binocular and grain mount data 13
D. Comparison of binocular and X-ray data 16
9. Internal structures and variation across the core 17
10. Stratigraphy from study of grain mounts 19
A. Textural changes 19
B. Compositional changes 19
C. Particle morphology 19
11. Stratigraphic Units 29
A. Fine-grained parts of 74001 and 74002 29
B. Properties af upper 5.5 cm of 74002 32
C. Uppermost 5 mm 35
WORKS CITED IN TEXT 36
APPENDIX 37
LIST OF TABLES
TABLE
I. List of photographs of 74002 and 74001 7
II Data on grain mounts from Drive Tubes 74002/74001 8
III Continuous trends, 74001 and 74002 14
IV Comparison of grain mount and dissection data 16
V Size summary, 74002 and 74001 grain mounts 20
VI Composition summary, coarser size fractions in grain mounts 21
VII Morphological variations, orange and black particles 22
VIII Textural properties of upper 5.5 cm of 74002 33
IX Petrographic composition of upper 5.5 cm of 74002 33
$\mathrm{X} \quad$ Textural $\underset{*}{\text { properties }} \underset{*}{\text { of }} \underset{*}{\text { upper }} \underset{*}{5} \mathrm{~mm} \underset{*}{\text { of }} 74002$ 35
LIST OF ILLUSTRATIONS
Fig.
12. Sampling site illustration and map 3
13. Re-radiograph of 74002 10
14. Re-radiograph of 74001 11
15. Continuous trends, drive tubes 74002/74001 15
16. Internal structures in the upper part of 74002 18
17. Grain size vs. depth, grain mounts of $74002 / 1$ 23
18. Compositional properties, $0.12-0.25 \mathrm{~mm}$ particles 24
19. Compositional properties, $0.06-0.12 \mathrm{~mm}$ particles 25
20. Compositional properties, $0.01-0.06 \mathrm{~mm}$ particles 26
21. Changes in morphology of black particles, 74002/1 27
22. Changes in morphology of orange particles, 74002/1 28
23. Preliminary stratigraphic summary, Drive Tube 74002 30
24. Preliminary stratigraphic summary, Drive Tube 74001 31
25. Petrographic variations, upper 5.5 cm of 74002 34
26. Photographs of coarse fractions, top of 74002 34
APPENDIX
16 through 21. Dissection and allocation charts for 74001 38-43
22 through 27. Dissection and allocation charts for 74002 44-49

DRIVE TUBES 74002-74001

INTRODUCTION

Drive tubes 74002 and 74001 represent the upper and lower halves of a double drive tube, taken at the rim of Shorty Crater. These cores recovered a total of 68.1 cm of soil column, providing depth coverage that the nearby trench, only $5-8 \mathrm{~cm}$ deep, could not.

These drive tubes are unusual in containing relatively homogeneous, orange and black soil of distinctive petrography and composition, and not mixed with components from the surrounding regolith. Because of their unusual nature, the colored glass soils at Shorty Crater have been some of the moststudied material returned from the moon (Meyer et al. 1975). The orange and light-colored soils were collected from a shal low excavation that trenched across the orange glass deposit, and the black (very dark in aggregate) devitrified glasses were found in the lower part of the double drive tube. A thin, half-cm layer of grey mantling surficial soil was expected at the top of the core (Bailey \& Ulrich 1975, p. 153).

Because of the unusual cohesiveness and high density of the colored glass deposit, more than 28 hammer blows were needed to pound the tube to its maximum depth. The cohesiveness of the soil, however, made sample recovery unusually good, and the drive tubes were filled beyond design capacity. Although the cohesiveness hindered extraction of the core from the drive tubes, the unusually fine grain size and compositional uniformity expedited rapid processing of the opened core. A review of the geologic setting of the sample site and then the results of this sampling and processing activity are given below.

RELATIONSHIP TO SAMPLING SITE

The $74002 / 74001$ double drive tube was collected in the middle of an irregular, discontinuous deposit of orange glass, at a low area on the southwest rim of Shorty Crater and just east of a large boulder of fractured basalt (Fig. 74-
1). The core was taken near the trench, and extended from the Lunar Surface (Muehlberger et al. 73, p. 6-51) to 67.7 cm . At the sampling site, the orange glass deposit occupies a $1 \mathrm{~m} \times 2 \mathrm{~m}$ ellipsoidal zone on the surface with the long axis parallel to the crater rim (USGS AFGIT, 1975, p. 14). The extent of the orange area is documented in lunar surface photo AS17-137-20990. Contacts of the orange soil unit and surrounding grey soil are irregular and crenulate, but are roughly vertical, as seen in the trench photos, AS17-17320987 through 20989. Color zoning within the orange soil exposed in the trench face was also noted by the astronauts to be vertical (voice transcript $052259+$), with an outer band of yellowish soil grading inward to orange, and finally reddish soil on the innermost part of the orange glass deposit. (The drive tube was driven straight down, rather than slantwise, to sample the band of orange soil and to avoid the yellow soil.) To the surprise of the astronauts, the soil adhering to the exterior of both the lower and the base of the upper drive tubes was nearly black (voice transcript $052301+$), with orange soil discoloring the outside of the upper drive tube to a depth of 25 cm . In addition to the core, samples of the orange soil (74220) and
grey soils $(74240,74260)$ were taken from the Shorty Crater trench.
Heiken et al. (1974) argued that the orange and black soil of $74002 / 74001$ is a sample of stratified material that overlay the subfloor mare basalts; original location of the orange deposits, just above the subfloor basalts, was sketched in an outcrop mosaic by Heiken et al. (1974, p. 1706). Wolfe et al. (1975) interpreted Shorty as an impact crater, with the orange soil being Shorty ejecta. The impact that formed Shorty Crater excavated meter-sized clasts containing these strata and deposited them on the rim where one of the clasts was sampled. This interpretation is sustained here, with the following additions to its support: (1) Patchy areas of colored soil are distributed widely on the southern rim of Shorty Crater. These areas can be recognized by discoloration of overlying surficial materials through mixing with underlying orange and black material, both in close-up view at the trenching site (AS17-137-20990) and in more distant views in Panorama 19 (AS17-137-21007 through - 21013). Distribution of areas of orange, black and grey soil in Pan 19 (AS17-137-21008 through 21011) is sketched in Fig. 1, and occurrence of these colored soils is also indicated on the planimetric site map. (2) Areas of colored soil are approximately the same size as near-by boulders such as the parent of 74255, shown by age dating (Kirsten et al., 1973) to be Shorty Crater ejecta. (3) Bedding is discordant. Orange and black soil in the double drive tube is horizontally stratified, and presumably the rest of the deposit of orange and black soil where the sample was collected is also horizontally stratified, but contacts of orange, yellow, and grey soils are vertical as seen in the trench (voice transcript 0522 50), photo AS17-137-20990.

In summary, the horizontal stratification of the orange soil, its vertical contacts with grey mare soil, its occurrence in irregular patchy distribution, with color patches the same size as known ejecta blocks in the rim of a known impact crater, is best explained if the core sample came from a clast of orange and black soil deposited in the crater rim by the Shorty event.

The lunar orientation of the core can be inferred (photo documentation failed) from fracture patterns in the trench and in the cores. In trench photographs (e.g. AS17-137-20990) the orange soil appears to be somewhat cohesive, but fractured into polygons which have a prominent set of planar fractures dipping at approximately 60° toward the Shorty crater. Such an internal fracture pattern is seen in stereopair 1 of 74001 x-radiographs. This stereopair, therefore, is interpreted as being oriented radially to the crater, and stereopair 2 is tangential to the crater.

Fig. 1. Sketch of South Rim of Shorty Crater, showing areas of orange, black, and gray soils as seen in PAN 19, and planimetric sketch map (Modified from AFGIT, 1975) depicting distribution of areas of colored soils.

1. General

All Apollo cores are given preliminary cleaning and weighing in the Lunar Receiving Laboratory, x-rayed, extracted from the core tube, partially dissected, and the remaining core section is stabilized by peel and impregnation. Any deviations from the standard procedure were related to the fine grain size and unusual composition of the soil in these cores. Further details on general handling are in the introduction to this catalogue.
2. Timelines and Handling History

The double drive tube pair, 74002 and 74001 , were collected at Shorty Crater on 12 December, 1972. After extraction from the soil, the tubes were separated and the ends capped. On the lunar surface both tubes were put into Sample Return Container 2, which was sealed in the lunar vacuum and which held a vacuum of 28 microns Mercury (Butler et al. 1973, p. 30) until opened in the nitrogen cabinets in the Lunar Receiving Lab on 3 January, 1973. Since that date, both cores have been kept triple bagged in a dry nitrogen atmosphere cabinet except for a few hours in air for X-radiography (with the three bags remaining sealed). Weighing and dusting were completed by 8 January, 1973, and the core section was first X-rayed on 12 February, 1973. The initial x-radiographs showed that 74001 was filled beyond capacity, preventing the cap from seating properly, so the bottom end was opened and 2.415 gm of soil was extracted for allocation and study. From 22 February, 1973, until 10 December, 1976, both tubes were stored in the core storage cabinet. On the latter date 74001 was re-radiographed, using improved techniques. The core was immediately extruded, and dissections were completed by 30 April, 1972. 74002 was radiographed a second time on 18 May, 1977, and shortly thereafter extruded and dissected, with dissection completed by 1 September, 1977.
3. X-Radiography

Orthogonal stereopairs of 74002 and 74001 were originally prepared by radiography, using a medical x-ray with He-Fe radiation with a potential of 90 Kv and current of 50 ma for 5 seconds at a distance of 1 m (this catalogue p. 21-23). Because of poor radiographs at the above conditions, 74001 was also radiographed using much more current (300 ma), for 0.1 sec., at a potential of 80 Kv . Descriptions of the original radiographs appear in the Apollo 17 Sample Catalog (Butler et al. 1973) and Apollo 17 Preliminary Science Report (LSPET, 1973). 74007 yielded the less successful of the original radiographs because the drive tube was largely filled with black, devitrified glass, which is nearly opaque to X-rays. New radiography consisted of 35 min . exposures to multi-spectrum (white) industrial Tungsten X-radiation with a potential of 130 Kv and current of 50 ma . The new radiography used an improved holder that compensated for the curvature of the core tube and provided a flat image.
4. Extrusion

The extruding device failed in the initial attempt to extrude 74001. Because of the high density and internal content of cohesive soil polygons, the designed pressure capacity of the extruder was exceeded. The guide pins that held the extruding screw and attached ram sheared, placing torque on the core holder as well as the extrusion receptacle. This torque fractured the quartz top of the core receptacle, and pieces of quartz contaminated the uppermost part of the core, but otherwise apparently did not disturb the sample. Finally, a device was fabricated that held the ram screw in place well enough to extrude the core, although shavings and pieces of extruder came out of one end of the extrusion device at the same time the core came out of the other end. The pieces of extruder were swept up into a container and transferred out of the cabinet before the core was opened, but unseen labile contaminants from the extruder could have contaminated the cabinet and be in some core samples. Immediately after extrusion, the quartz top was lifted off, the smeared outside surface was scraped off, quartz slivers were picked out, and the prepared surface was photographed.

74002 was extruded in two steps: First, the uppermost 5 mm of core was extruded into a cylindrical receptacle made of 1 mm layers across the axis of the core. The core was then placed vertically and material across the entire diameter of the core was shaved off, 1 mm at a time as the layers of the receptacle were removed. Second, the remaining core was clamped into the extruder and pushed routinely into the dissection receptacle. 74002 was the easiest core to extrude to date, probably because the density did not exceed the capacity of the machine, as 74001 did, because there were no large particles to obstruct free passage of the extruding ram as in 60009 and 60010, and because special care was taken to maintain a straight alignment of the extruding device.
5. Dissection
A. Configuration for each dissection

Both 74002 and 74001 were dissected in three passes along the length of the core, which was placed horizontally on the dissection table. The first and third dissections took place by standard procedures (Lunar Receiving Laboratory Sample Processing Procedure 108) and the second according to the chemically pure mode (in which an effort was made to handle the sample as little as possible, thereby reducing exposure to contamination). Receptacle and layers are illustrated in Fig. 16-17 of the March 1977 update of Lunar Core Catalog. In both the first and third dissections samples were excavated along the length of the core in 5 mm increments, passed through a 1 mm sieve and all particles coarser than 1 mm were identified, measured and weighed. In the "chemically pure" mode of the second dissection, specially cleaned acid-washed tools were used to minimize lead (Pb) contamination. So that there would be a minimum contact between soil and hardware soil was placed directly in acidwashed containers without sieving.

For 74001, the first dissection involved soil under the cover plate, the second involved material under the first 3 side plates (15 mm total thickness) of the receptacle and soil within the last 2 plates (10 mm total thickness) was removed in the 3rd dissection. For 74001, the first dissection removed 7% of the core, the second removed 43% and the third 29\%. An illustration of the sideplate configuration is in the 3rd supplement of the Lunar Core Catalog, issued March 1977, Fig. 16-17. For 74002 cover and top sideplate were removed for the first dissection, and then 2 sideplates were removed (10 mm thickness for each pair) for the last two dissections of 74002. In 74002 the first dissection removed 21% of the core, the second and third each removing 29% of the core. In both cores, a remainder of 21% was left for peeling and impregnation.

Figs. 16 through 27 document the subsample numbers and locations of all splits removed during standard dissection of 74001 and 74002. Table I lists all photographs taken during processing of these cores.
B. Sample handling procedures during dissection

Standard 5 mm dissection intervals along the core were used, and a detailed description of each interval in place was followed by its extraction, sieving, and binocular examination. However, because of the fine grain size (only 3 coarse particles were retained on the 1 mm sieve in all of 74001) and lack of obvious texture changes, emphasis was placed on the study of the visible coarse fraction on the surface planed off during the previous dissection pass. Maximum grain size was recorded, types and color of droplets noted where possible. Next 2 or 3, observational $5 \mathrm{~mm}^{2}$ areas were marked off on the surface of each interval and all visible grains in each area were classified according to their being single, double, or compound droplets. This procedure was designed to test for changes in grain type and to look for incipient marbling that might be missed because of uniform color and apparently uniform texture. If two observational areas were statistically different in each interval, one would suspect marbling. This procedure has the limitations: (1) Only the coarsest material was examined, because particles under 50 microns were too small to see the dissecting microscope, and (2) vitreous glass is disproportionately represented because black, devitrified glass shows up poorly in reflected light and is likely to be missed. During dissection, degree of cohesiveness and size of fracture polygons in each unit was noted.

The lowest 22 cm of 74002 was as fine grained as 74001 and was dissected in the same manner. Above 10 cm , cm-size clasts of orange soil could be recognized in the core, but the clasts could not be extracted as separate entities between 10 and 5.5 cm . Small amounts of orange soil could be removed, but the clasts interfingered too closely with the surrounding soil for separate extraction. On the other hand, clasts of orange and dark soil, agglutinates, and mare basalts and breccia fragments occurred in the coarse fraction between 5.5 cm and the top of the core; these are reported as "coarse fraction" in the dissection charts, and should be studied as detrital components as well as the orange and black
glass droplets, fragments of droplets, and mineral grains.
The fineness of the soil, however, made it necessary to prepare grain mounts from 1 mg samples taken at strategic locations through the core in order to obtain quantitative date on grain size and composition.

Table I.

LIST OF PHOTOGRAPHS

Toptc of illustration
74001
74002

S-77-27496-27510
S-77-27640-27644
S-77-28106-28113
S-77-28096-28105(poor color)
S-77-29911-29920(better color)
S-77-28126-28135
S-77-28462-28472
S-77-28491-28500
S-77-23404-23413
S-77-26923,26926,26928 and 26858
S-77-26@21-26934(partial set) and 26859-26861 (rest of set)
S-77-26957,26958

Coarse fraction in detrital interval at top of 74002

Interval

S-77-28069	($30.0-29.5 \mathrm{~cm}$)
S-77-28068	(25.0-24.5 cm.)
S-77-28306	$(22.5-22.0 \mathrm{~cm})$
S-77-28305	(21.0-20.5 cm)
S-77-28304	(19.0-18.5 cm)
S-77-28307	$(17.0-16.5 \mathrm{~cm})$
$\begin{array}{r} S-77-28181 \\ 28184 \end{array}$	(14.0-13.5 cm)
$\begin{array}{r} S-77-28183 \\ 28179 \end{array}$	$(8.0-7.0 \mathrm{~cm})$
28180	
Photo No. In	Interval Sampie
5-77-28527	1.0-0.5 -,2071
S-77-28528	1.0-0.5-,207i
5-77-28172	1.0-0.5-,88
S-77-28174	1.5-1.0-,88
S-77-28525	1.5-1.0-,2069
S-77-28526	1.5-1.0-,2061
S-77-28178	2.0-1.5-,85
S-77-28523	2.0-1.5 -,2067
S-77-28524	2.0-1.5 -,2067
S-77-28175	2.5-2.0-,85
S-77-28521	2.5-2.0-,2065
S-77-28522	2.5-2.0 -,2065
S-77-28176	3.0-2.5 -, 23
S-77-28519	3.5-2.5 -,2063
S-77-28520	3.5-2.5 -,2063
S-77-28177	3.5-3.0-,81
S-77-28173	4.0-3.5 -,79
S-77-28517	4.5-3.5 -,2060
S-77-28518	4.5-3.5-,2060
S-77-28516	5.5-4.5 -, 2057
S-77-28515	5.5-4.5 -,2057

C. Preliminary examination of grain mounts

Following the first dissection, grain mounts were prepared and studied to obtain a measure of compositional and textural variations that was more accurate than measurements under the dissecting microscope. Ten such Preliminary Examination samples were selected as follows, from each core:

Table II. Data on grain mounts from drive tubes 74002/74001.

Sample	Interval below top of core (cm)	Rationale for sampling
74002		
- ,99	2.0- 2.5	Characterize upper part of section, in which agglutinates and rock fragments occur.
- ,98	8.0-8.5	Evaluate whether dark soil with clasts, between 10 and 5.5 cm , is fallback breccia associated with Shorty Crater, or secondarily reworked and gardened material.
-, 97	12.0-12.5	Characterize the most pure orange soil in core.
-, 96	14.0-14.5	Compare moderately light, massive soil to orange soil, and to friable, moderately light soil.
-, 95	15.5-16.0	Characterize and compare moderately light soil to darker soil.
-, 94	17.0-17.5	Characterize moderately dark soil that is friable, compare it to similar, but massive soil, and to lighter soil that is also friable.
-, 93	19.0-19.5	Characterize moderately dark soil that is massive.
-, 92	21.5-22.0	Compare upper part of dark, friable zone to lower part of same zone to see if internal changes within one zone are more or less than changes between zones.
-, 91	24.0-24.5	Characterize dark, friable soil, compare it to dark, massive soil.
-, 90	26.5-27.0	Characterize massive, dark soil from base of core.
74001		
-,374	1.5-2.0	Characterize upper part of friable interval (Major unit 3).
-,375	6.0-6.5	Compare upper and lower parts of friable interval.
-,376	9.0- 9.5	Characterize hard, massive zone (Major unit 2).
-,377	13.5-14.0	Compare thin, crumbly lamina in hard, massive znne to more cohesive portions of same major unit.
-,378	14.5-15.0	Text for small-scale variation between massive and crumbly parts of major unit 2. This sample is relatively hard and cohesive.
-,379	16.5-17.0	Characterize lower part of massive zone (Major unit 2).
-,380	20.5-21.0	Characterize lower friable zone, and search for internal variations within this predominantly homogeneous unit.
-,381	23.0-23.5	,
-,382	27.0-27.5	" " " "
-,383	32.0-32.5	" " "

Data collected during study of grain mounts encompasses size distribution, composition, and particle morphology (Tables V, VI, VII). In determining grain size, point-count passes were made across each slide until six passes were completed or 500 -points were counted. Data were not collected where multiple grains obscured the others. Grains were assigned to the following size classes to be comparable to data of other workers: < $0.01 \mathrm{~mm}, 0.01$ $0.06 \mathrm{~mm}, 0.06-0.12 \mathrm{~mm}, 0.12-0.25 \mathrm{~mm}, 0.25-0.5 \mathrm{~mm}$, and $0.5-1.0 \mathrm{~mm}$.

Compositional parameters quantified for the 3 size fractions in the range
$0.01-0.06,0.06-0.12$ and $0.12-0.25 \mathrm{~mm}$ include orange glass, black glass", pyroxene, olivine and plagioclase. Because grain mounts were not ground to a uniform thickness to reduce loss of material, mineral grains could not be identified using standard relief and birefringence criteria; but were recognized on the basis of cleavage, internal fracture, relative birefiringence, and twinning. Grains that were strongly twinned and which showed well-defined cleavage were classified as pyroxene whereas untwinned grains with high birefringence and irregular internal fracture were classified as olivine. Some of the identifications may be erroneous, but changes in characters are internally consistent through the cores and correspond to other major changes in the cores.

Characterization of the morphologies of the orange and black particles follows the categories of Heiken et al. (1977) and includes complete and broken spheres, complete and broken ovoids, indeterminate fractured particles and compound particles. Because of limited sample particle numbers in the 1 mg grain mounts, it was not always possible to find 500 objects in a grain category, but as many points as possible were counted. For the size classes between 0.01 and 0.25 mm , variations of morphology of individual components were quantified as follows: orange glass, abundance of entire and broken spheres, ovoid droplets, compound particles and indeterminate broken fragments. Similar data were collected for black (devitrified) glass, except that broken particles rarely showed sharp fractures because they were recrystallized or secondarily coated with tiny glass droplets, and the broken particles were accordingly classified into a single category. Crystallized, non-glassy grains were abundant in the grain mounts, and were classified to principal mineralogy (pyroxene or olivine) and genetically identified as xenoliths or xenocrysts (untwinned angular grains with smooth edges and no reaction rims) and droplet pseudomorphs (crystallized glass droplets that show external form of droplets, but are internally crystallized, showing a fine internal structure and no reaction rims). Composition of pseudomorphs was related to pyroxene (strongly twinned with well-defined cleavage) or olivine (apparently not twinned, with irregular, internal fracture).

RESULTS

1. X-radiograph stratigraphy

Descriptions of the new x-radiographs appear in Figs. 2 and 3. Although description was still hindered by the opacity of the samples, much more information could be obtained on internal massiveness, size and type of internal fracture polygons and internal structure. On the

VII . 5.10
Fig. 2 RE-RADIOGRAPH OF DRIVE TUBE 74002

Interval Unit	Description of Unit
$-0.3-1.0 \mathrm{~cm}$ IX	Partially void with equant clods or clasts averaging slightly less than 1 cm in diameter, and with subrounded edges. Transverse fractures predominate.
$1.0-5.5 \mathrm{~cm}^{\text {transit }}$ VIII	Relatively massive unit with approximately 75\% clasts and 25\% matrix. Clasts average 2 cm in diameter, and range is size down to 4 mm . The clasts are mostly equant, with relatively straight edges. A major inclined fracture cuts this unit, as seen in stereopair 2.

indistinct transition
Finely clastic-appearing unit with a $50-50$ clast to
matrix ratio, with 2 - \&mm relatively equant clas ts
evenly distributed through the unit. A major fracture
system appears in stereopair 2, inclined at approx-
imately 600 to the horizontal, and extending from 1 cm.
in the upper unit to a depth of 10 cmo in unit VI.

VI
distinct bowl-shaped contact, convex downward
$13.5-14.5 \mathrm{cr} \quad$ Finely granular, thin unit with approximately 40%
Vm-sized, equant, sorted, subrounded granules.
$14.5-15.0 \mathrm{~cm}$ Thin but contact, convex downward
IV internal fractures. Similar to VII, but thinner.

rom 5 mm to 4 cm , with 60% of the unit made of the
largest size polygons, the remainder of 0.5 to cm .
III polygons. Largest polygons appear to be tabular to wedge-shaped in stereopair 2, and are bounded by nearly planar fractures inclined at approximately 60° to the vertical, and as long as the polygons.
Smaller polygons are equant with transition

Cloddy interval, with 30% matrix, 70% clods ranging from 3 mm to 2 cm , and with an even distribution of II all sizes indicating poor sorting. Although 25\% of appear to have wedge shape most clods a edes and with highly irregular edges.
21.5 cm to base of core (The base of the drive tube has a thick meta bit which obscures internal features in the lowest 3 cm . Examination of the lowest part of the core during preliminary examination indicated that there end of the mm of soil protruding out of the bottom end of the drive tube, and that the core was more than 100\% full, as a result.)

Interval with large inclined fracture polygons,
most of which are $1-2 \mathrm{~cm}$ long, half as wide and
thick. Sizes of polygons vary from double to half the
above. Most polygons are inclined approximately 60°
sharp, planar boundaries. 1 , and have relatively
NOTE: The whole of core 74001 is relatively opaque and resistant to X-rays, and is interpreted to be composed entirely of the fine-grained black devitrified glass that was reported by Astronauts Cernan and Scrmitt to occur at the top and bottom of the core (Bailey and Ulrich, opaque and transparent material, with the transpare of radiographically toward the lunar surface, at the top of the core, Vitreous glass passes X-rays whereas the crystal planes in the ditreous glas
glass scatter the X-rays, making it radiographically opaque, crystalline it is believed that the orange glass is confined to the radiograpicall transparent zones in 74002 .

Within 74001, there are no density or opacity changes suggestive of rock fragments; instead, most changes are seen as obliquely intersecting zones of slightly lower opacity, suggestive of internal fractures. The ver, at the top of the cores, there are some clods of dark glass rounded, with edges which fade from fracture polygons by being relatively fourthed, with edges which fade out rather than terminate abruptly. edges of clasts are ding edges of fracture polygons fit together: whereas throughout the are discordant. Sizes of internal polygons varies are interprete core, enabling identification of discrete zones which are interpreted herein as being parts of more extensive strata.
basis of these parameters, it was possible to distinguish nine units in 74001 and ten in 74002.

Massive units predominate from the bottom of the core, all through the lower tube, 74001 , and up to 25 cm in 74002. The lower part of 74001 shows indistinct cm-sized fracture polygons, the middle of 74001 and the lower pari of 74002 are massive with internal horizontal stratification, and the top of 74001 is massive but internally fractured. In 74002 from 25 cm up to 7 cm , the core is moderately compacted and shows an alternation of massive and fractured zones. Polygonal fragments in some fractured zones can be matched to similar-shaped vacuities in the massive zones. From 7 cm to the Lunar Surface, 74002 is relatively transparent and de-densified, showing a $0.5 \mathrm{~cm}-2 \mathrm{~cm}$ polygonal pattern.

2. Depth effects

A. Compaction Due to Extrusion

Both cores showed a small amount of compaction after extrusion was completed. The original length of the lower core, 74001, was apparently 35.7 cm , approximately 8 mm over the design capacity of the drive tube. The 3 mm of soil bulging from the lower end of the core was scraped off in 1973, (74001, 2 \& 3) so the cap fit snuggly, and 5 mm of excess soil (74001,21) was excavated from the top of the core so the plug seated properly leaving a pre-extrusion length equal to the designed capacity of the drive tube; 34.9 cm . The extruded core showed a length of 34.3 cm , indicating a compaction of 0.6 cm . Because contact between the massive and crumbly units remained at 7 cm , and the distinctive transition between semi-friable and friable material remained at 19 cm compaction apparently was confined to the basal part of the core.

The original length of the upper core, 74002, was either 32.5 cm as measured on X-radiographs, or 32.4 cm as determined from hardware measurements prior to extrusion. Following extrusion, core length was 32.0 cm , indicating a compaction of 0.4 to 0.5 cm , depending on which original length is used. Compaction was probably confined to the lower end of the core, because the section between 30 and 32 cm appears tightly compacted after extrusion, but was partially void and de-densified before extrusion in the X-radiograph. Other parts of the core are uncompacted, as evidenced by non-disruption of voids at $1-5 \mathrm{~cm}, 16 \mathrm{~cm}, 18 \mathrm{~cm}$, and $20-22 \mathrm{~cm}$. These voids appear in stereopair 2 of the radiographs, taken shortly before extrusion, and in the same position photographs, taken shortly after extrusion.

B. Sample Depth Convention

As best as can be determined, the original total length of the core was 68.1 cm , including in 74001, a pre-extrusion within-tube length of 34.9 cm , and 0.8 cm of removed material, and in 74002, a 32.4 cm pre-extrusion length. Although location of compacted intervals can be inferred by comparing the extruded soil column to X-radiographs, it is not possible to determine precisely the exact degree and amount of compaction everywhere
in the core. Hence, depth values on dissection diagrams and related sections are given in post-extrusion figures, which can be directly related to scale intervals shown in photographs of the cores in the dissecting table, and which are used to account for sample position in the LCL (Lunar Curatorial Laboratory) Sample Inventory. Using post-extrusion figures, 74002 is 32.0 cm long, the removed material from the top of 74001 is 0.5 cm long, the dissected core 74001 is 34.3 cm long, and the 0.3 cm of material removed from the base of 74001 gives a post-extrusion total soil column length of 67.1 cm . Depth in each core, as entered in the LCL inventory, starts at the top of the soil in the dissection receptacle. Calculations of depth below Lunar surface in 74001 should add the 0.5 cm of soil removed before extrusion to the length of 74002 , to get the soil column above the top of 74001.

3. Stratigraphy from Binocular Microscope Observation

A. Introduction

Some changes in the exposed core could be related to changes seen in X-radiograph but other parameters showed no correlation between X-radiographs and parameters seen under the binocular microscope. During dissection, it was found that few > 1 mm particles occurred below 5.5 cm , and all appeared to be tiny particles of orange glass, black devitrified glass or mineral grains. Abundances of these were estimated under the binocular microscope, under the section "continuous trends". Many coarse particles were recovered from the interval between 5.5 cm and the Lunar Surface; occurrence of these is documented next, under "Properties of the upper 5.5 cm of 74002."

B. Continuous Trends

The limited data that could be taken during dissection are listed in Table III; the data were verified by comparison to grain mounts at the same intervals. Table III includes estimated percent coarse (larger than approximately 0.1 mm) droplets, maximum droplet size, maximum common droplet size, and percent of droplets which are orange and black. Of these criteria, changes in percent coarse (Fig. 74-16) as well as in maximum droplet size, in conjunction with structural data, were used to define the boundaries of the stratigraphic units and provide the only continuous data over the entire core. Changes in the proportions of orange and black glasses are as likely to occur within units as at unit boundaries.

C. Comparison of Grain Mount and Dissection Data

During dissection, attempts were made to estimate size-distributions of the coarser particles, and to evaluate abundance of orange and black droplets larger than 0.1 mm (practical limit of visibility under the dissection microscope), and to evaluate abundance of single and compound grains. Table 1 shows size and composition estimates from the grain mounts, and for equivalent dissection intervals. Dissection 1 was performed first, then the grain mounts were examined, and dissection 3 was conducted with grain mount data on hand so that adjustments could

Table III．Continuous Trends，Cores 74001 and 74002

		7						
Sample Inter－ val（LCL Inven－ tory）	\％ Coarse	$\begin{aligned} & \text { Max } \\ & \text { Size } \\ & \star 1 \\ & \hline \end{aligned}$	Max Abun－ dant	$\begin{gathered} \% \\ \text { Orange } \\ \star 2 \end{gathered}$	\％ Coarse	Max Size ＊1	Max Abun－ dant	orange $\star 2$
	Top of 74001				Top of 74002 removed earlier			
010－05	5	． $5-.25$	． 25	15－20	5	．25－． 12	． 12	72
015－10	5	． $5-.25$	． 25	15－20	5	．25－． 12	． 12	72
020－15	5	． $5-.25$	． 25	15－20	5	． $5-.25$	． 18	66
025－20	5	．25－． 12	． 12	15－20	5	． $5-.25$	． 25	66
030－25	3	．25－． 12	． 12	15－20	5	． $5-.25$	． 25	72
035－30	2	．25－． 12	． 12	15－20	8	． $5-.25$	． 25	72
040－35	2	．25－． 12	． 12	15－20	8	． $5-.25$	． 25	70
045－40	5	． 25	． 25	15－20	12	． $5-.25$	． 25	72
050－45	5	． 25	． 25	15－20	10	．25－t	． 25	70
055－50	4	． 25	． 25	15－20	10	． $5-.25$	． 25	70
060－55	4	． 25	． 25	15－20	10	．25－士	． 25	68
065－60	2	．25－． 12	． 12	15－20	10	．25－士	． 25	66
070－65	2	．25－． 12	． 12	15－20	10	．25－士	． 25	66
075－70	5	．50－． 25	． 25	5－10	10	． $5-.25$	． 25	68
080－75	5	．50－． 25	． 25	5－10	10	． $5-.25$	． 18	66
085－80	5	．50－． 25	． 25	5－10	8	．25－． 12	． 18	72
090－85	5	．50－． 25	． 25	5－10	5	．25－t	． 25	74
095－90	4．	．50－． 25	． 25	5－10	6	． $5-.25$	． 25	86
100－95	3	．50－． 25	． 25	5－10	6	．25－t	． 18	88
105－00	5	．50－． 25	． 25	5－10	6	． $5-.25$	． 18	78
110－05	5	．50－． 25	． 25	5－10	7	． $5-.25$	． 25	92
115－10	5	．50－． 25	． 25	5－10	8	． $25- \pm$	． 25	84
120－15	5	． $50-.25$	． 25	5－10	7	． $5-.25$	． 25	90
125－20	2	． 25	． 25	5－10	6	． $5-.25$	． 25	88
130－25	2	． 25	． 25	5－10	7	．25－\％	． 25	66
135－30	3	． 25	． 25	5－10	6	．25－． 12	． 25	62
140－35	3	． 25	． 25	5－10	6	．25－． 12	． 18	66
145－40	3	． $5-.25$	． 25	5－10	8	．25－． 12	． 18	46
150－45	3	． $5-.25$	． 25	5－10	8	．25－． 12	． 18	50
155－50	3	． $5-.25$	． 25	5－10	7	． $5-.25$	． 18	48
160－55	3	．25－． 12	． 12	5－10	7	． $5-.25$	． 18	46
165－60	3	．25－． 12	． 12	5－10	7	． $5-.25$	． 25	44
170－65	3	．25－． 12	． 12	incr	7	． $5-.25$	． 18	44
175－70	3	． $5-.25$	． 25	to	6	． $5-.25$	． 25	36
180－75	3	． $5-.25$	． 25	20\％	4	． $5-.25$	． 25	32
185－80	3	． $5-.25$	． 25	20	4	$.5-.25$	． 18	26
190－85	3	． 5 －． 25	． 25	20	5	．25－士	． 25	25
195－90	3	． $5-.25$	． 25	20	6	．25－士	． 25	25
200－95	3	． $5-.25$	． 25	20	6	． $25- \pm$	． 25	26
205－00	3	．25－． 12	． 12	20	6	．25－	． 18	18
210－05	3	．25－． 12	． 12	20	10	． $5-.25$	． 18	18
215－10	3	．25－． 12	． 12	15－20	10	． $5-.25$	． 18	26
220－15	2	．25－． 12	． 12	10－15	10	． $5-.25$	． 18	26
225－20	2	．25－． 12	． 12	5－10	9	．25－． 12	． 18	32
230－25	3	．25－． 12	． 12	5－10	6	．25－． 12	． 25	18
235－30	5	．25－． 12	． 12	5－10	6	．25－． 12	.12	12
240－35	4	．25－． 12	． 12	5－10	5	．25－． 12	． 18	18
245－40	2	．25－． 12	． 12	5－10	4	． $5-.25$	． 18	23
250－45	2	．25－． 12	． 12	5－10	5	． $4-.25$	． 18	23
255－50	6	． $5-.25$	． 25	5－10	4	． $5-.25$	． 12	23
260－55	5	． $5-.25$	． 25	5－10	4	． $5-.25$	． 12	30
265－60	4	． 25	． 25	5－10	5	． $5-.25$	． 18	24
270－65	4	． 25	． 25	5－10	4	． $5-.25$	． 18	26
275－70	3	． $5-.25$	． 12	5－10	5	． $5-.25$	． 18	22
280－75	2	．25－． 12	． 25	5－10	6	．25－． 12	． 18	23
285－80	2	． $5-.25$	． 12	5－10	7	．25－． 12	． 18	19
290－85	2	$.5-.12$	． 12	5－10	5	． $5-.25$	． 18	19
295－90	2	．25－． 12	． 12	5－10	8	． $5-.25$	． 18	18
300－95	5	．25－． 12	． 12	5－10	6	．25－． 12	． 18	17
305－00	5	． $25-.12$	． 12	5－10	6	．25－． 12	． 12	15
310－05	5	． $5-.25$	． 25	5－10	6	．25－． 12	． 12	16
315－10	5	． $5-.12$	． 12	5－10	6	．25－． 12	． 18	14
320－15	4	．25－． 12	． 12	5－10	6	．25－． 12	． 18	14
325－20	3	．25－． 12	． 12	5－10		of 74002		
330－25	3	．25－． 12	． 12	5－10				
335－30	4	． $5-.12$	． 12	5－10				
340－35	4	． $5-.12$	． 12	5－10				
345－40	4	．25－． 12	． 12	5－10				

＊ 1 Max．size indicates approximate size of largest particles in 5 mm interval
Max．abundant indicates approximate size of largest abundant particles in 5 mm interval ＊ 2 \％orange is percentage of 150 droplets／interval visually estimated to be orange．The remainder appeared to be black．

total dissected length -67.1 cm
Fig. 4. Continuous trends, drive tubes 74002/1. Data are from table III. "\% coarse" is abundance of particles 0.1 mm , and size range of largest common particles is indicated by error bars under "maximum droplet size".
be made to visual estimates.

Table IV. Comparison of grain mount and dissection data on 74002 petrography

Interval	Sample No.	$\begin{aligned} & \approx \text { in siz } \\ & 0.5-.25 \end{aligned}$	e class $.25-.12$	percent orange	percent compouna	Grain Mount No.	$\begin{gathered} 8 \text { in } 5 \\ 0.5-.2 \end{gathered}$	$\begin{aligned} & \text { size class } \\ & (\mathrm{mm}) \text { per } \\ & 25.25-.12 \text { or } \end{aligned}$	ercent orange	percent compound	$\begin{gathered} \text { Sample } \\ \mathrm{No} \text {. } \end{gathered}$	$\begin{array}{r} \text { \% in si } \\ \text { (m } \\ 0.5-.25 \end{array}$		percent orange	percent compound
2.0-2.5	-. 84	Tr.	7-10\%	71\%	19\%	. -, 99	0.8\%	1.6\%	56\%	30\%	-,2065	Tr.	10-12\%	66\%	10\%
$8.0-8.5$	-, 68	3\%	7-10\%	88\%	14\%	-,98	0.4\%	3.6\%	53\%	35\%	-,2049	Tr-1\%	10-15\%	72\%	10\%
12.0-12.5	-,59	3-5.	7-10\%	92\%	12\%	-, 97	1.8\%	4.6\%	70\%	25\%	-,2040	Tr.	10-15\%	88\%	Tr.
14.0-14.5	-,53	3-5\%	7-10\%	93\%	18\%	-.,96	1.4\%	5.0\%	53\%	40\%	-. 2036	Tr.	7-10\%	46\%	10\%
15.5-16.0	$-, 50$	5\%	7-10\%	32\%	19\%	-,95	0.8\%	3.4\%	43\%	40\%	-, 2033	1 r.	12-15\%	46\%	10\%
17.0-17.5	-, 47	3-5\%	7-10\%	90\%	24\%	-.,94	1.2\%	7.0\%	44\%	40\%	-,2030	Tr.	10-12\%	36\%	50\%
19.0-19.5	-. 43	2-3\%	7-10\%	73\%	28\%	-,93	0.8\%	1.4\%	32\%	50\%	-,2026	Tr.	7-10\%	25\%	50\%
21.5-22.0	-,38	5\%	7-10\%	75\%	23\%	-,92	0.4\%	3.6\%	25\%	60\%	-,2021	1-2\%	7-10\%	32\%	65%
24.0-24.5	-, 33	Tr.	5-7\%	77\%	28\%	-.,91 i	indet.,	, poor slide	e 18\%	75\%	-,2016	1-2\%	7-10\%	5-10\%	95\%
26.5-27.0	-,28	22	5\%	67\%	23\%	-,90	0.6\%	2.2\%	7\%	85\%	-,2011	1-2\%	7-10\%	5-10\%	95\%

As can be seen on the table, it is difficult to obtain meaningful size estimates from dissection, probably because fine grains mask some of the coarser grains, and also because other coarse grains which shed dust appear to be perched on the surface of the dissected core, giving them an apparent high abundance. In general, coarser-grained intervals were consistently recognized and distinguished from finer-grained intervals, both in dissection and in observing grain mounts.

Without prior knowledge of composition, the abundance of orange glass, as seen in dissection 1, was consistently overestimated, and the abundance of compound grains was greatly underestimated. Binocular estimates of abundances for the third dissection were calibrated with the grain mount data. It was possible to differentiate with confidence, the orangish but dull, metallic-appearing grains originally classified as orange from the bright, shiny grains that were really orange. General trends were consistently recognized, even if the data were quantitatively inaccurate. Furthermore, it was possible during dissection to detect both rapid and gradual changes over the length of the cores, even if it was not possible to obtain quantitative data.

D. Comparison of Binocular and X-ray Data

A study of X-radiographs of 74001 discerned three major units, the lowest extending between 19 cm and the base of the core, the next between 7 and 19 cm , and the uppermost between the top of the core and $7 \mathrm{~cm} . \quad \mathrm{X}$-radiography also revealed internal changes in fracture pattern within the major units; these changes were regarded as unit-level changes. During dissection, major units were easily recognized because the upper and lower major units were internally fractured and readily distinguished from the middle major unit which was massive and cohesive. In the massive middle part of the section, X-ray units were recognized and defined petrographically, but it was not possible to recognize petrographic units
in the X-radiograph of the upper and lower major units. The grain size variations that enabled petrographic definition of the units could not be seen in the X-radiograph.

Similarly, in 74002, X-radiograph units II, III, IV, V and X, identified in part on major changes in internal fracture pattern, were identified by fracture pattern during dissection, but units between 5 and 20 cm , identified in dissection on petrographic compositional changes, were unrecognizable in X-radiograph.

In general, units that had internal fracture characteristics as an important defining property were recognized in X-radiograph as well as in dissection. Units based on petrographic changes were consistently not identified in X-radiograph.
4. Internal structures and variation across the core

74001 was nearly uniformly dark, and units showed little contrast between each other, with the most obvious differences being relatively subtle changes in cohesiveness and abundance of large droplets. No well-defined unit boundaries could be seen during dissection, but grainsize and cohesiveness changes seen on one side of the core were found at the same depth position on the other side. With such unclear data, the best one can do is infer that stratal boundaries persist relatively straight across 74001, and that strata are relatively flat-lying. X-radiographs show some planar surfaces that are roughly horizontal, but it was not certain during dissection that these were stratal boundaries or shear zones.

In contrast to the unclear boundaries of 74001, distinct orange and black color changes are easily seen in 74002, especially in the upper part of the core. Below 10 cm , most color boundaries at 13, 17, 20 and 25 cm were broadly irregular but persisted across the core in a manner that suggested slightly disturbed but relatively flat-lying strata. Above 10 cm , stratal character changes sharply, as illustrated in Fig. 05 . Between 10 and 5.5 cm are numerous cm-sized, crenulate, verticallyaligned very friable orange clasts in a dark matrix. Although individual clasts are relatively small, the general characteristics of the unit persist across the core in the same part of the section. At approximately 5.5 cm , there is a textural change marked by an irregular but relatively horizontal boundary. Above this boundary, most elongate particles are horizontally aligned, rather than vertical, and rounded clasts take the place of the crenulate clasts that were so abundant between 5.5 and 10 cm . This general structural configuration continues to the top of the core, with a maximum in orange clasts between 2 and 3 cm depth.

Fig. 5. Intemal structures in the upper part of 74002
5. Stratigraphy from study of Grain Mounts

A. Textural Changes

Variation in grain size through the cores appears in Fig. 6. Although there are no spectacular changes, the lowest quantity of very fine material occurs at 17 cm in 74002. From there, the mean size decreases upward to the lunar surface and downward to the bottom of the core. Quantitative sieve data may change these results.
B. Compositional Changes

In contrast to the relative uniformity in size, there are major variations in composition throughout the core (Figs. 7, 8 and 3) with samples ranging from over $2 / 3$ orange glass (74002,97) to approximately 80\% black devitrified glass (74001,374-,383). Orange glass shows relatively little difference between grain sizes, making up approximately the same proportions of the coarsest through the finest sizes of all samples. In contrast, soil clasts are common in the largest sizes (Fig. 7) but become progressively rarer in finer fractions (Figs. 8, 9). Crystallized grains (mostly as part of glass droplets) increase in finer sizes, at the expense of black devitrified glass. Trends as well as inflection points which are seen in the coarsest sizes (Fig. 7) are generally also seen in the finer sizes (Figs. 8, 9), so discussion of trends in one figure is generally applicable to all. Orange glass is very rare from the base of the core to 10 cm in 74001, is rare between 10 cm in 74001 and 25 cm in 74002, and becomes increasingly abundant between 25 cm and 12 cm in 74002. It averages 60% of the fines at the top of 74002. Pyroxene generally occupies the same proportion of all samp Tes, but olivine is most abundant below 15 cm of 74001, above which it undergoes a sharp decrease. Black, devitrified glass makes up a relatively constant proportion of the cores from the base of 74001 to 25 cm of 74002, and it declines rapidly from 25 to 13 cm of 74002. Devitrified glass plus mineral grains make up a relatively constant 30 40% of the top of 74002 .

C. Particle Morphology

Morphology (external shape and degree of fracture) of black particles (Fig. 10) varies differently from that of orange (Fig. 11) particles, and does not vary as much, and seems to show more correspondence to stratification than variation in the morphology of the orange particles. Maxima in spheres and single droplets occur at 20 cm in $74002(-, 93)$ and 15-17 cm in 74001 (-,378 and -,379). Compound particles, in contrast, are at a maximum in the massive unit in $74001(7-13 \mathrm{~cm})$. Orange particles are more abundant in 74002 and show stratal-related morphological changes in this core more prominently than do the black particles.

Fractured and compound orange particles are at a minimum in the massive strata between 10 and 15 cm of 74002 , and show a major increase at 15 cm to the base of the core. Fragmented orange particles are most abundant in mid-74001, and entire unbroken orange droplets are of greatest abun-
dance between 10 and 15 cm of 74002 .
In nearly all samples, there were a few orange glass particles with a variety of shapes including teardrop, fractured teardrop and rod or cylinder. Because of the low number of such particles, it was not possible to analyze for trends.

SIZE SUMMARY, 74002 AND 74001 GRAIN MDURITS

Sample No.	$.5-1 \mathrm{~mm}$		$.25-$		$.12-.25 \mathrm{~mm}$		$.06-.12 \mathrm{~mm}$		$: 01-.06 \mathrm{nmm}$		under . 01 mm		Points
	No. of Points	$\$$ of Ponts	No. of Points	t of Points	No. of Points	$\%$ of Points	No. of Points	2 of Points	No. of Points	\% of Points	No. of Points	$\%$ of Points	
					DRIVE	TUBE	74002						
-.,99	0	0	4	0.8\%	8	1.6%	43	8.6\%	138	27.6\%	307	61.4\%	500
-. 98	0	0	2	0.4\%	18	3.6\%	53	10.6\%	140	28.0\%	288	57.6\%	500
-. 97	0	0	9	1.8\%	23	4.6\%	53	10.6\%	136	27.2\%	279	55.8\%	500
-,96	1	0.2\%	. 7	1.4\%	25	5.0\%	51	10.2\%	150	30.0\%	269	53.3\%	500
-, 95	0	0	4	0.8\%	17	3.4\%	51	10.2\%	162	32.4\%	266	53.2\%	500
-. 94	0	0	6	1.2\%	35	7.0\%	69	13.8\%	140	28.0\%	250	50.0\%	500
-. 93	0	0	4	0.8%	7	1.4\%	36	7.2\%	166	33.2\%	287	57.4\%	500
-. 92	0	0	2	0.4%	18	3.6\%	60	12.0\%	174	34.8\%	246	49.2\%	500
-,91	This s		appeared anoma lously thin			and fine-grained		d, and was probably		improperly prepared			
-. 90	0	0	3	0.6\%	11	2.2\%	42	8.4\%	179	35.8\%	266	53.2\%	500
					DRIVE	TUBE	74001						
-,374	0	0	2	0.6\%	10	2.8\%	40	11.3\%	88	24.9\%	214	60.4\%	354
-.,375	0	0	0	0	19	4.4\%	27	6.2\%	115	26.5\%	273	62 9\%	434
-.,376	0	0	0	0	7	2.5\%	14	5.0\%	65	23.1\%	195	69.3\%	281
-. 377	0	0	3	0.6\%	7	1.5\%	20	4.4\%	102	22.3\%	315	68.9\%	457
-, 378	0	0	0	0	6	1.9\%	15	4. 8%	80	25.9\%	208	67.3\%	309
-. 379	0	0	1	0.2\%	7	1.6\%	$19^{\text {- }}$	4.2\%	101	22.4\%	322	71.5\%	450
-. 380	0	0	1	0.4\%	4	1.5\%	15	5.7\%	62	23.7\%	180	68.7\%	262
-, 381	0	0	2	0.4\%	7	1.4\%	32	'6.2\%	134	25.9\%	342	66.2\%	517
-, 382	0	0	2	0.8\%	4	1.5\%	14	5.4\%	66	25.5\%	173	66.8\%	259
-. 383	0	0	5	0.9\%	5	0.9\%	28	5.3\%	156	29.2\%	339	63.6\%	533

Table. V. Grain size data, $74002 / 74001$ grain mounts.

Table VI.		COMPOSITIONAL SUMMARY FOR COARSER SIZE CLASSES, GRAIN MOUNTS FROM DRIVE TUBE 74002										
		Orange Glass		Black "Glass"		" Pyroxene		Olivine		Soil Clasts		
Sample No.	$\begin{array}{r} \text { Size } \\ \text { Class } \end{array}$	No. of Points	\% of Total	No, of Points	$\begin{gathered} \text { \% of } \\ \text { Total } \end{gathered}$	No. of Points	\% of Total	No. of Points	\% of Total	No. of Points	$\begin{gathered} \text { \% of } \\ \text { Total } \end{gathered}$	Total Points Counted
-,99	0.12-.25mm	121	56\%	65	30\%	4	2\%	2	1\%	22	11\%	214
	0.06-. 12 mm	128	45\%	87	31\%	'43	11\%	18	6\%	19	7\%	284
	0.01-. 06 mm	148	61\%	45	19\%	28	12\%	15	6\%	6	2\%	242
-, 98	$0.12-.25 \mathrm{~mm}$	114	53\%	76	35\%	5	2\%	6	3\%	15	7\%	216
	0.06-. 12 mm	109	47\%	56	24\%	47	20\%	15	6\%	6	3\%	233
	0.01-. 06 mm	164	59\%	49	18\%	44	16\%	16	6\%	4	1\%	276
-,97	$0.12-.25 \mathrm{~mm}$	141	70\%	53	26\%	6	3\%	0	0\%	0	0\%	200
	$0.06-.12 \mathrm{~mm}$	159	67\%	48	20\%	17	7\%	13	6\%	0	0\%	236
	$0.01-.06 \mathrm{~mm}$.	200	73\%	32	12\%	30	11\%	11	4\%	0	0\%	272
-, 96	$0.12-.25 \mathrm{~mm}$	112	53\%	91	43\%	4	2\%	3	1\%	0	0\%	210
	0.06-. 12 mm	114	35\%	122	38\%	67	21\%	20	6\%	0	0\%	322
	0.01-.06mm	171	42\%	120	29\%	78	19\%	38	9\%	0	0\%	407
-,95	0.12-.25mm	97	43\%	112	50\%	15	6\%	1	1\%	0	0\%	226
	0.06-. 12 mm	105	37\%	94	33\%	64	23\%	19	7\%	0	0\%	282
	0.01-. 06 mm	143	44\%	83	26\%	65	20\%	31	9\%	0	0\%	322
-,94	0.12-. 25 mm	92	44\%	101	48\%	10	5\%	5	2\%	0	0\%	208
	$0.06-.12 \mathrm{~mm}$	96	28\%	154	44\%	62	18\%	35	10\%	0	0\%	347
	0.01-.06mm	170	35\%	142	30\%	112	23\%	58	12\%	0	0\%	481
-,93	$0.12-.25 \mathrm{~mm}$	68	32\%	121	57\%	19	9\%	3	1\%	0	0\%	211
	0.06-. 12 mm	95	24\%	175	44\%	83	21\%	48	12\%	0	0\%	401
	0.01-.06mm	104	26\%	151	38\%	99	25\%	47	12\%	0	0\%	401
-.,92	$0.12-.25 \mathrm{~mm}$	49	25\%	139	70\%	10	5\%	2	1\%	0	0\%	200
	0.06-. 12 mm	50	16\%	187	61\%	47	15\%	21	7\%	0	0\%	305
	0.01-. 06 mm	55	18\%	146	48\%	73	24\%	30	10\%	0	0\%	304
-,91	$0.12-.25 \mathrm{~mm}$	51	15\%	210	60\%	57	16\%	32	9\%	0	0\%	350
	$0.06-.12 \mathrm{~mm}$	56	16\%	199	56\%	63	18\%	35	10\%	0	0\%	353
	$0.01-.06 \mathrm{~mm}$	81	24\%	. 158	47\%	71	21\%	29	9\%	0	0\%	339
-.,90	0.12-.25mm	36	8\%	325	73\%	52	11\%	31	7\%	0	0\%	444
	0.06-. 12 mm	67	17\%	237	59\%	33	16\%	18	8\%	0	0\%	211
	0.01-. 06 mm	46	17\%	174	66\%	36	14\%	17	6\%	0	0\%	263
		COMPOSITIONAL		SUMMAR	FOR	COARSER	SIZE	ASSES,	GRAIN	OUNTS F	ROM DR	TUBE 74001
-, 374	0.12-.25mm	49	17\%	225	80\%	19	6\%	8	3\%	0	0\%	300
	0.06-. 12 mm	56	18\%	188	62\%	37	12\%	22	7\%	0	0\%	304
	0.01-.06mm	28	14\%	123	60\%	36	18\%	17	8\%	0	0\%	204
-,375	0.12-. 25 mm	36	18\%	136	70\%	16	8\%	7	4\%	0	0\%	195
	0.06-. 12 mm	147	18\%	533	63\%	95	12\%	48	6\%	0	0\%	823
	0.01-.06mm	76	18\%	213	49\%	94	22\%	48	11\%	0	0\%	433
-,376	$0.12-.25 \mathrm{~mm}$	19	9\%	146	73\%	26	13\%	10	5\%	0	0\%	201
	0.06-. 12 mm	33	17\%	124	61\%	25	12\%	14	7\%	0	0\%	200
	0.01-.06mm	45	18\%	114	46\%	57	23\%	28	11\%	0	0\%	249
-,377	0.12-.25mm	4	4\%	92	81\%	13	11\%	5	4\%	0	0\%	114
	0.06-. 12 mm	13	6\%	159	72\%	39	17\%	11	5\%	0	0\%	222
	0.01-.06mm	19	9\%	105	50\%	62	29\%	24	11\%	0	0\%	212
-, 378	$0.12-.25 \mathrm{~mm}$	3	2\%	116	78\%	15	10\%	15	10\%	0	0\%	149
	0.06-. 12 mm	24	9\%	156	56\%	56	20\%	40	14\%	0	0\%	278
	0.01-.06mm	22	9\%	113	45\%	74	30\%	41	16\%	0	0\%	250
-, 379	$0.12-.25 \mathrm{~mm}$	14	7\%	154	77\%	19	10\%	13	7\%	0	0\%	200
	0.06-. 12 mm	27	9\%	190	63\%	42	14\%	41	14\%	0	0\%	300
	0.01-. 06 mm	28	14\%	95	47\%	39	19\%	36	18\%	0	0\%	200
-, 380	$0.12-.25 \mathrm{~mm}$	7	4\%	146	73\%	23	12\%	23	12\%	0	0\%	200
	0.06-. 12 mm	15	6\%	156	66\%	37	16\%	38	16\%	0	0\%	246
	0.07-.06mm	26	13\%	92	46\%	39	20\%	43	21\%	0	0\%	200
-,381	0.12-.25mm	28	6\%	333	74\%	47	10\%	52	12\%	0	0\%	450
	$0.06-.12 \mathrm{~mm}$	30	7\%	251	61\%	64	15\%	69	17\%	0	0\%	414
	0.01-. 06 mm	36	12\%	123	40\%	74	24\%	84	27\%	0	0\%	308
-,382	$0.12-.25 \mathrm{~mm}$	34	8\%	262	68\%	44	11\%	47	12\%	0	0\%	388
	$0.06-.12 \mathrm{~mm}$	14	7\%	122	58\%	36	17\%	37	17\%	0	0\%	209
	$0.01-.06 \mathrm{~mm}$	32	15\%	82	38\%	44	21\%	57	27\%	0	0\%	214
-, 383	0.12-.25mm	13	6\%	143	72\%	20	10\%	24	12\%	0	0\%	200
	0.06-. 12 mm	15	7\%	143	62\%	37	16\%	32	14\%	0	0\%	228
	0.01-.06mm	18	9\%	95	42\%	47	24\%	38	19\%	0	0\%	200

Table VII. MORPHOLOGICAL VARIATIONS IN ORANGE AND BLACK PARTICLES, GRAIN MOUNTS FROM DRIVE TUBE 74002 ORANGE PARTICLES, 3 size class

	Spherical dropletsCompleteBroken**				Ovoid droplets lete Broken				Indet. equant Fragments		Compound Particles		Total Points Counted	
$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	No. of Points	\% of Points	No. of Points	$\%$ of Points	No. of Points	\% of Points								
-,99	23	4.9\%	124	22.0\%	8	1.7\%	122	26.2\%	164	35.3\%	23	4.9\%		465
-,98	33	5.9\%	131	23.2\%	23	4.1\%	136	24.1\%	203	36.0\%	38	6.7\%		564
-,97	96	18.3\%	96	18.3\%	47	9.0\%	127	24.2\%	118	22.5\%	40	7.6\%		524
-,96	35	11.0\%	79	25.0\%	32	10.1\%	92	29.1\%	58	18.4\%	19	6.0\%		316
-,95	45	16.4\%	63	23.0\%	15	5.5\%	56	20.4\%	61	22.3\%	34	12.4\%		274
-,94	16	3.2\%	117	23.8\%	14	2.8\%	127	25.8\%	185	37.0\%	58	11.9\%		492
-,93	9	3.4\%	74	24.7\%	88	2.9\%	69	24.9\%	81	29.2\%	34	12.3\%		277
-,92	7	2.9\%	58	24.4\%	4	1.7\%	62	26.0\%	85	33.7\%	33	14.8\%		248
-,91	12	7.7\%	37	23.9\%	4	2.6\%	44	28.4\%	46	29.7\%	Indet	. poor	slide	155
-,90	15	10.3\%	25	17.2\%	5	3.4\%	27	18.6\%	48	33.1\%	25	17.2\%		145

BLACK PARTICLES, 30 size class

	Spheres*		Ovoid Droplets		Broken equant fragments		Compound Spheres		Particles Ovoid	particles	Total points Counted
-,99	9	5\%	4	2\%	41	20\%	68	34\%	78	39\%	200
-,98	6	6\%	4	4\%	16	16\%	28	28\%	48	47\%	102
-,97	9	5\%	6	3\%	44	21\%	54	25\%	92	45\%	205
-,96	11	5\%	12	5\%	46	22\%	58	26\%	87	42\%	214
-,95	14	7\%	10	5\%	43	21\%	59	28\%	76	37\%	202
-, 94	17	7\%	13	6\%	35	15\%	74	31\%	103	43\%	236
-,93	23	11\%	15	7\%	28	14\%	55	27\%	85	41\%	206
-,92	18	9\%	10	5\%	40	20\%	58	28\%	76	37\%	202
-,91	17	7\%	9	4\%	47	19\%	78	31\%	102	40\%	253
-,90	14	7\%	4	2\%	38	19\%	61	30\%	83	41\%	200

*Note that orange and black particles show similar, but not identical forms.
MORPHOLOGICAL VARIATIONS IN ORANGE AND BLACK PARTICLES, GRAIN MOUNTS FROM DRIVE TUBE 74001
ORANGE PARTICLES, 3 size class

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	Spherical Droplets Complete\quad Broken				Ovoid DropletsComplete				Indet. equant Fragments		Compound Particles		
	No. of Points	\% of Points	Total Points Counted										
-,374	13	6\%	31	15\%	7	4\%	28	14\%	86	43\%	37	18\%	202
-,375	7	3\%	25	12\%	6	3\%	34	16\%	101	49\%	32	16\%	205
-,376	12	6\%	24	12\%	11	5\%	44	21\%	74	36\%	43	21\%	208
-,377	4	3\%	13	9\%	7	5\%	28	19\%	58	40\%	32	22\%	144
-,378	12	7\%	18	11\%	6	4\%	32	20\%	64	40\%	28	18\%	160
-,379	9	4\%	18	9\%	13	6\%	36	18\%	88	44\%	37	18\%	201
-,380	11	5\%	28	14\%	9	4\%	24	12\%	84	41\%	48	24\%	204
-,381	11	5\%	20	10\%	10	5\%	43	21\%	76	37\%	44	22\%	204
-, 382	11	6\%	26	15\%	10	5\%	41	19\%	83	38\%	47	21\%	219
-,,383	9	4\%	25	10\%	10	4\%	51	21\%	84	34\%	69	28\%	248

BLACK PARTICLES, $3 \oslash$ size class

	Spheres*		Ovoid Droplets		Broken equant fragments		Compound Spheres		Particle Ovoid	articles	Total points Counted
-,374	26	7\%	26	7\%	13	20\%	92	25\%	150	51\%	367
-,375	24	5\%	39	8\%	87	18\%	135	28\%	198	41\%	483
-,376	14	4\%	10	3\%	48	14\%	86	25\%	158	46\%	344
-,377	18	5\%	11	3\%	55	15\%	66	18\%	215	59\%	365
-,378	54	10\%	16	3\%	70	13\%	107	20\%	289	54\%	536
-,379	34	12\%	11	4\%	31	11\%	56	20\%	148	53\%	280
-,380	37	7\%	36	7\%	68	13\%	88	17\%	291	56\%	520
-,381	26	6\%	39	9\%	48	11\%	61	14\%	262	60\%	437
-,382	24	6\%	24	6\%	36	9\%	64	16\%	252	63\%	400
-,383	31	7\%	13	3\%	49	11\%	66	15\%	282	64\%	441

*Note that orange and black particles show similar, but not identical forms.

Fig. 6 . Grain size versus depth in drive tubes 74002/74001.

Fig. 7 . Compositional proportions of 0.12 - 0.25 mm particles, drive tubes $74002 / 1$.

Fig. 8. Compositional proportions of $0.06-0.12$ mm particles, drive tubes $74002 / 1$.
VII.5.26

Fig. 9. Compositional proportions of 0.01 - 0.06 mm particles, drive tubes 74002/1.

Fig. 10. Changes in particle morphology of black particles from drive tubes $74002 / 74001$. Cumulative percent is not used here in order to better illustrate types of co-variation and trends in particle abundance.
VII.5.28

Fig. 11. Changes in morphology of orange particles from 74002/74001. Cumulative percentages are not used here in order to better illustrate co-variation in trends.

6. Stratigraphic units

A. Fine-Grained Parts of 74001 and 74002

Although three major units and nine radiographic units were recognized in 74001 and 10 in 74002, on the basis of grain mount and dissection petrography, 13 units were identified in 74001 and 7 in 74002 (Figs. 12 and 13). The lowest five in 74001 are similar compositionally but were distinguished on the basis of grain morphology and depositional structure. The next five are similar in physical properties but show notable difference in composition and texture. Like the lowest five units the upper three units in 74001 are similar compositionally but were distinguished on the basis of structures that resemble those of the lower units. In 74002 each of the 6 units differs from the others both in texture and in composition; the small-scale structures seen in 74001 are absent from 74002.

The lowest five units in 74001, from 34.3 cm (bottom of the core) up to 19.0 cm , form the lower major unit. Under the binocular microscope these are seen to be flaky cohesive to friable, dull in appeararce, and in grain mount, are very low in orange glass, high in black devitrified glass as well as mineral grains, with approximately equal amounts of pyroxene and olivine. Individual units are differentiated on internal droplet succession. At the top of each of the five units, multiple droplets are most abundant, and single droplets prevail at the base of each unit. The change from single to multiple droplets at unit boundaries is relatively abrupt, but changes within units are gradual. Specifics of unit boundaries and samples included in each unit are presented in Figs, 12, 13.

The middle five units in 74001 are relatively massive and cohesive, with abundant coarse vitreous particles and are considered the middle major unit. Unit 6, from 19.0 up to 15.5 cm , is relatively massive and cohesive and shows no internal transition from one droplet to another, but is compositionally similar to units $1-5$. Unit 7, from 15.5 cm up to 14.5 cm is very cohesive, coarse-grained, and is similar to units 1-5 compositionally, in being low in orange glass and high in olivine. Unit 8 , another thin unit, is found between 14.5 and 13.5 cm and is friable, relatively fine grained, and contains little olivine, and orange glass. Orange glass exhibits a major increase by unit 9 and 10 . Both units are very cohesive with units from 13 to 10.0 cm being noticeably coarser, with a concentration of large droplets but from 10.0 to 7.0 cm being slightly finer. Units 11,12 and 13 are similar to the lower part of the area, and comprise the upper major unit. These are friable and relatively fine-grained, and show the multiple double to single droplet succession described for the basal five units. However, orange glass at the top of this lower core is much more abundant ($13 \% \mathrm{vs} 7 \%$) and olivine is as rare as it is in the cohesive coarse units in the middle of the core.
VII.5.30

In the upper core, 74002, unit 1 (32 up to 25 cm) is fairly cohesive, with very abundant dark compound droplets, a very few orange glass droplets. Unit $2(25-20 \mathrm{~cm})$ is moderately friable, is also low in orange glass, with a maximum in dark droplets and a minimum in mineralized grains. Unit 3 ($20-17 \mathrm{~cm}$) shows a marked increase in orange glass, to intermediate abundances, and has numerous compound droplets. The maximum orange glass is found in unit $4(17-10 \mathrm{~cm})$. In this unit, there is also very little fragmentation of particles, in contrast to other units. Unit 5 (5.5 to 10 cm) is darker than unit 4, but contains a similar abundance of orange. However, particles in this unit are very fragmented, in contrast to those of the stratum immediately below. Unit $6(5.5 \mathrm{~cm}$ up to the lunar surface) is characterized by the presence of agglutinates and abundant clasts of orange and dark soil. Although this unit is a grayish to dark orangish-gray, it does not have the ropy glasses found in nearby surficial gray soils (74240 and 74260).

B. Properties of Upper 5.5 cm of 74002

The top 5.5 cm of 74002 differs markedly from the rest of the core in that it contains abundant soil clasts, agglutinates, and lithified rock fragments. In X-radiograph, soil above 5.5 cm is much less compact than soil below that depth. Glass particles, as seen in grain mounts, are much more fragmented in the upper part of the core. All this evidence indicates that the upper part of the core is a gardened detrital zone that differs from the cohesive orange and black glass succession below. Between 10 and 5.5 cm soil is relatively compact and contains no agglutinates or detrital rock fragments. Because of this inconsistent evidence, it is not clear whether the section between 5.5 and 10 cm is gardened, Shorty fall-back, or something else.

Above 5.5 cm , the core is packed with clasts of orange and dark soil, and may be regarded as very coarse-grained, with as much as $49.5 \%>1 \mathrm{~mm}$ (Table IX). Because of the friability of the soil clasts, there is a decrease in clast size toward the top of the core, but mm-sized clasts of orange soil occur at the very top of the core, as seen in upper surface photos 5-77-27498 and 27499. Fragmentation, as best seen in orange particles in grain mounts, is much higher in the reworked part of the section; for instance, nearly 5% of spheres and 2% of ovoid droplets are unbroken at 2.5 cm , whereas $11-18 \%$ spheres and 10% ovoid droplets are not broken in samples below 12 cm . Furthermore, in the deeper samples there are only 20% indeterminate broken particles but at 2.5 cm , there are 35%.

Composition is considered in terms of abundance of cohesive clasts > 1 mm . Such clasts are retained on the 1 mm sieve, size-sorted, classified, and weighed individually. Abundance in each size fraction is then determined by weight percentage calculations. Orange clasts make up all fragments over 10 mm , and both orange and dark clasts are ubiquitous throughout the upper part of the section. The lowest agglutinate and mare basalt fragments appear at 4.5 cm , and progressively increase to the top, (although the only "large" cohesive particles at the very surface are agglutinates).

Table VIII.
TEXTURAL PROPERTIES OF THE UPPER 5.5 CM OF DRIVE TUBE 74002

$\begin{aligned} & \text { Depth } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Sample } \\ & \text { Nos. } \end{aligned}$	Over 10 Wt.	${ }^{1 m}$	$4-10$		$\begin{aligned} & 2 \mathrm{Lt} .4 \mathrm{~mm} \\ & \mathrm{Wt} \end{aligned}$	\%	$\begin{aligned} & 1 .-2 \mathrm{~mm} \\ & \mathrm{Wt} . \end{aligned}$	\%	$\begin{aligned} & \text { Under } 1 \\ & \text { Wt. } \end{aligned}$	m	Total Wt.
0-1	-,2 -, 3		\ldots	\cdots	0.011 gm	0.6\%	1.934 gm	99.4\%	1.945 gm
1-2	-, 4 -, 5	0.045 gm	2.0\%	2.138 gm	98.0\%	2.233 gm
2-3	-, 6-,7 -		0.053 gm	2.1\%	2.445 gm	97.9\%	2.498 gm
3-4	-, 8 -, 9	\cdots	\ldots	0.213 gm	7.9\%	0.060 gm	2.2\%	2.426 gm	89.9\%	2.699 gm
4-5	-, 10-, 11		...	\ldots		0.229 gm	9.3\%	0.075 gm	3.0\%	2.150 gm	87.6\%	2.454 gm
5-15	$\begin{array}{r} -, 87-, 89 \\ -, 2068-71 \end{array}$	\ldots	1.354 gm	15.2\%	0.391 gm	4.4\%	0.270 gm	3.08	6.877 gm	77.3\%	8.892 gm
15-25	$\begin{array}{r} -, 84-, 86 \\ -, 2064-67 \end{array}$	2.911 gm	22.6\%	1.370 gm	10.68	0.176 gm	1.4\%	0.239 gm	1.8\%	8.224 gmm	63.6\%	12.920 gm
25-35	$\begin{array}{r} -, 80-, 83 \\ -, 2061-63 \end{array}$	5.334 gm	35.2\%	1.456 gm	9.6\%	0.309 gm	2.0\%	0.392 gm	2.6\%	7.647 gm	50.5\%	15.138 gm
35-45	$\begin{array}{r} -, 77-, 79 \\ -, 2058-60 \end{array}$	2.178 gm	16.6\%	1.414 gm	10.7%	0.269 gm	2.0\%	0.365 gm	2.8\%	8.932 gm	67.9\%	13.158 gm
45-55	$\begin{array}{r} -, 74-, 76 \\ -.2055-25 \end{array}$	\ldots	0.985 gm	7.0\%	0.253 gm	1.8\%	0.173 gm	1.2\%	12.599 gm	89.9\%	14.010 gm

Table IX.

$$
\text { COMPOSITION OF UPPER (DETRITAL) PART OF } 74002
$$

size class

interval	$\begin{gathered} \text { sample } \\ \text { nos. } \end{gathered}$
0-1 mm	,2,3
1-2 mm	,4
2-3 mm	, 6
3-4 mm	,8,9
4-5mm	, 10,11
5-15 mm	,87-,89
	and, 2068-71
15-25 mm	,84-, 86
	and, 2064-67
25-35 mm	, 80-, 83
	and, 2061-63
$35-45 \mathrm{~mm}$,77-,79
	and, 2058-60
45-55 mm	,74-,

4- 10 mm
orange dark soll basalt orange dark soists clasts fams.
clasts

2-4 mm orange dark soll basalt
....
....
....
....
....
$\begin{array}{lllll}.839 & 624 & .061 & 54 & .444 \\ 334 & 1.344\end{array}$
$.98572 \% .483284$ \qquad . 1.370
1.4561008 \qquad 1.456
.257 83\% . 052 17\% \qquad . 0.309 309 .243 61\%. $132 \quad 33 \% .010 \quad 2 \% .012 \quad 3 \% \quad 0.397$
.894 63\% . 520 37\% \qquad 1.414
$.19065 \% .101$ 35\% \qquad 0.291 .118 33\% . 238 65\% . 005 1\% . 004 1\% 0.365 .366 61\% . 235 39\% 0.60
.064 25\% . 189 75\% \qquad 0.253.018 11\% . 155 89\%
$1-2 \mathrm{~m}$
orange dark sofl basalt agglutinclasts clasts clasts ates Wt \% Wt. \% sun
\qquad
\qquad
\qquad
.107 50\% . 071 33\% . 035 17\% 0.213
$\begin{array}{llllllllllllllllllllllllllll}. & 245 & 57 \% & .138 & 32 \% & .050 & 11 \% & 0.433 & .130 & 48 \% & .093 & 34 \% & .020 & 7 \% & .027 & 10 \% & 0.270\end{array}$
.045 39\% . 071 61\% $\ldots . . .0 .116$. 0.093 39\% . 117 49\% . 006 2\% .023 10\% 0.239
\qquad

Fig. 14.

0-1 mm

74002.9 (5-77-27613)
3. 4 m

Fig. 15. B. Light clasts on transverse section across the core during 5nm dissection. Diameter in both cases is 4 om

C. Uppermost 5 mm

The uppermost 5 mm was dissected in 1 mm increments, from the top (Lunar surface) down to a depth of 5 mm . Three microstrata were identified in this interval; quantitative characteristics are presented in Table 1. The uppermost stratum occupies the interval between the lunar surface and 1 mm , and consists of very fine-grained drab-gray soil with $99.4 \%<1 \mathrm{~mm}$. The one coarse particle is an agglutinate. The next 2 mm are mixed gray and orange soil, and are somewhat coarser, containing 2% coarse material, mostly agglutinates, with a few relatively cohesive clasts of orange soil. Although the bulk of the sample is drabgray, small orange clasts are scattered irregularly in linear and irregular clumps around the core. The clasts appear to be $1-5 \mathrm{~mm}$ in diameter, and occupy $5-10 \%$ of the surface of the second through fifth intervals of the 5 mm dissection. From 3 to 5 mm is a noticeable change in texture and composition. Coarse material makes up more than 10% of the sample, and there is an abundance of clasts over 5 mm in diameter. Compositionally, there is a decrease in drab-gray fines, in favor of orange soil; and fragments of mare basalt make their appearance, composing approximately 10% of the coarse fraction. Selected coarse fractions are depicted in Fig. 15a and distribution of clasts on dissection surfaces is depicted on Fig. 15b.

Table X . Textural properties of 0-5 mm of 74002

$\begin{gathered} \text { Depth } \\ (\mathrm{mm}) \end{gathered}$	Sample No.	Wt.	\%	Wt.	$-2 \underset{\%}{m m}$	$\begin{aligned} & \text { over } 2 \mathrm{~mm} \\ & \text { Wt. } \end{aligned}$	total (wt)
0							
	2-3	1.934 gm	99.4\%	0.011 gm	0.6\%	----- -----	1.945 gm
1	4-5	2.188 gm	98.0\%	0.045 gm	2.0\%		2.233 gm
2							
	6-7	2.445 gm	97.9\%	0.053 gm	2.1\%	----- -----	2.498 gm
3	8-9	2.426 gm	89.9\%	0.060 gm	2.2\%	$0.213 \mathrm{gm} \mathrm{7.9} \mathrm{\%}$	2.699 gm
4							
	10-11	2.150 gm	87.6\%	0.075 gm	3.0\%	$0.229 \mathrm{gm} \mathrm{9.3} \mathrm{\%}$	2.454 gm

WORKS CITED IN TEXT

AFGIT (Apollo Field Geology Investigation Team): 1975, Documentation and environments of the Apollo 17 samples. Astrogeology 73 U. S. Geol. Surv. Interagency Rept. 316 p .

Bailey, N. G., and Ulrich, G. E.: 1975, Apollo 17 voice transcript pertaining to the geology of the landing site. U. S. Geol. Surv. GD-74-031, 361 p.

Butler, Jr., Patrick, et al.: 1973, Apollo 17 lunar sample information catalog. NASA MSC Special PubT. 03211, 447 p.

Heiken, G. H. and McKay, D. S.: 1974, Lunar deposits of possible pyroclastic origin. Geochim. Cosmochim Acta 38, 1703-1718.

Heiken, Grant, and McKay, David: 1977, A model for eruption behavior of a volcanic vent in eastern Mare Serenetatis. Proc. Lunar Sci. Conf. 8th, 3242-3255.

Kirsten, T., Horn, P., Heymann, D., Hubner, W., Storzer, D.: 1973, Apollo 17 crystalline rocks and soils: Rare gases, ion tracks, and ages. Trans. Am. Geophys. Union 54, 595-597.

Meyer, C., Jr., McKay, D. S., Anderson, D. H., and Butler, P. Jr.; 1975.
The source of sublimates on Apollo 15 green and Apollo 17 orange glass samples. Proc. Lunar Sci. Conf. 6th, 1673-1699.

Muehlberger, W. R. et al.: 1973, Preliminary investigation of the Apollo 17 landing site. in Apol1o 17 Preliminary Science Report. NASA SP-330, 6-1 through 6-91.

Wolfe, E. W., Lucchitta, B. K., Reed, V. S., Ulrich, G. E., and Sanchez, A. G.: 1975, Geology of the Taurus-Littrow Valley floor. Proc. Lunar Sci. Conf. 6th, 2463-2482.

APPENDIX

DOCUMENTATION OF DISSECTION SPLITS AND
 ALLOCATIONS TO PRINCIPAL INVESTIGATORS

Fig. 18
MANOR

Fig. 19

Investigator and splits received
Fig. 20
ALLOCATIONS FROM CORE 74001

VII.5. 44

Fig. 22 LOCATION OF SAMPLES, FIRST (STANDARD) DISSECTION OF DRIVE TUBE 74002

* These samples contain the most pure orange soil that could be extracted from the core
dark clasts
orange clasts

Fig. 23
LOCATION OF SAMPLES, SECOND (CHEMICALLY PURE) DISSECTIO:I OF 74002

| COMPOSITIONAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT |

VII.5. 46

Fig. 24 LOCATION OF SAMPLES, THIRD (STANDARD) DISSECTION OF DRIVE TUBE 74002

Fig. 25 ALLOCATIOHS FROM CURE
74002 , DISSECTION 1

